BIOGAS

Introduction

- Biogas typically refers to a gas produced by the biological breakdown of organic matter in the absence of oxygen.
- Biogas originates from biogenic material and is a type of biofuel.
- One type of biogas is produced by anaerobic digestion or fermentation of biodegradable materials such as biomass, manure, sewage, municipal waste, green waste and energy crops.
- This type of biogas comprises primarily methane and carbon dioxide.

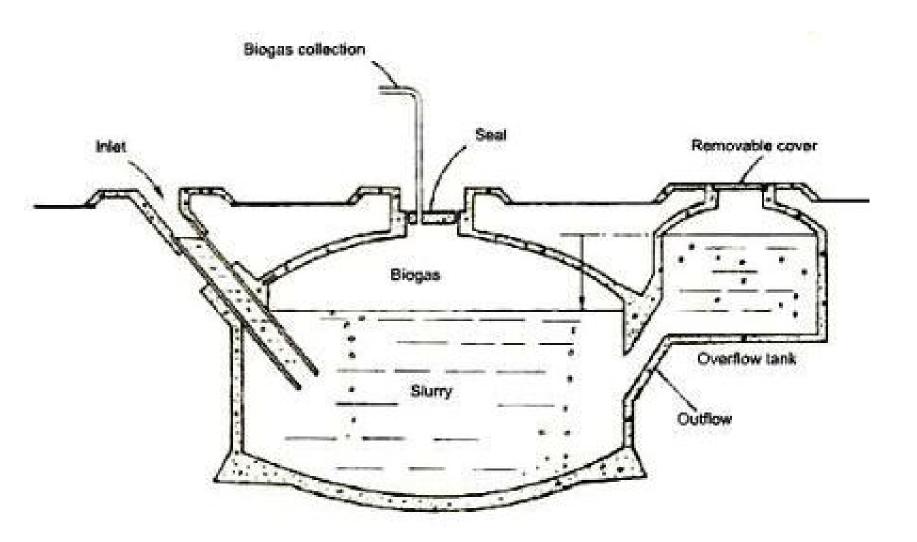
Production

- Biogas is practically produced as landfill gas (LFG) or digester gas.
- A biogas plant is the name often given to an anaerobic digester that treats farm wastes or energy crops.
- Biogas can be produced utilizing anaerobic digesters.
- These plants can be fed with energy crops such as maize silage or biodegradable wastes including sewage sludge and food waste.

Raw materials

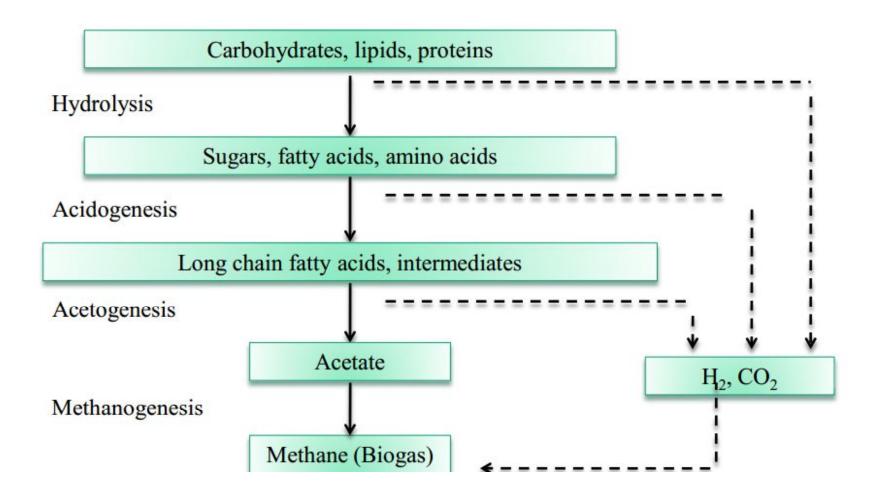
- Raw materials may be obtained from a variety of sources - livestock and poultry wastes, night soil, crop residues, food-processing and paper wastes, and materials such as aquatic weeds, water hyacinth, filamentous algae, and seaweed.
- Different problems are encountered with each of these wastes with regard to collection, transportation, processing, storage, residue utilization, and ultimate use.

Industrial and food processing waste


 these arise from sugar, potato, vegetable and fruit processing, brewery and distillery wastes, and whey from cheese production.

Animal excreta and agricultural wastes

- these are solid wastes rich on cellulose and lignocelluloses.
- Agricultural biomass like straw, bagasse, etc. show poor digestibility and often high C : N ratio.


Domestic and municipal wastes

• these are in the form of solid wastes and sewage respectively.

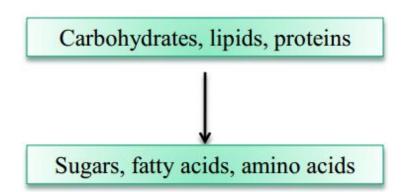
Digestion

- Digestion refers to various reactions and interactions that take place among the methanogens, non-methanogens and substrates fed into the digester as inputs.
- The breaking down of inputs that are complex organic materials is achieved through three stages.
 - Stage 1: Hydrolysis
 - Stage 2: Acidification
 - Stage 3: Methanization

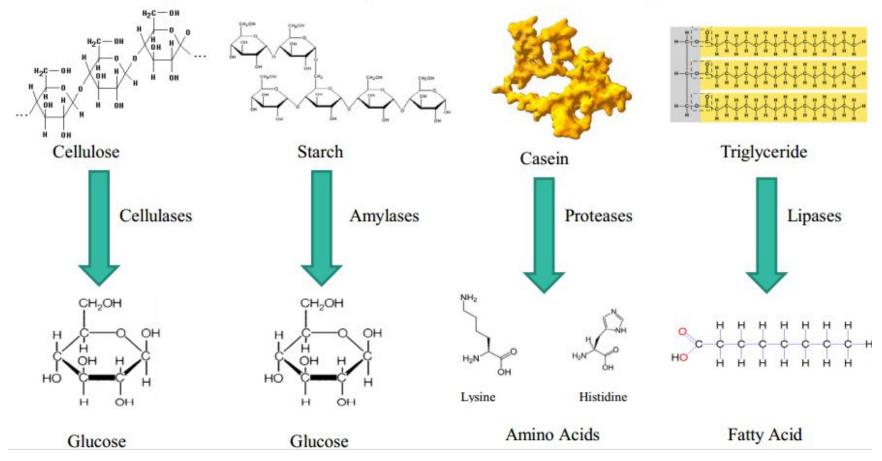
Stage 1: Hydrolysis

- The waste materials of plant and animal origins consist mainly of carbohydrates, lipids, proteins and inorganic materials.
- Large molecular complex substances are solubilized into simpler ones with the help of extracellular enzyme (cellulase, amylase, protease and lipase) released by the bacteria.
- This stage is also known as polymer breakdown stage.

Hydrolysis


- Large organic compounds are broken down into monomeric compounds
- Allows cell to assimilate materials
- Performed by many organisms
 - Bacteria, fungi, protists

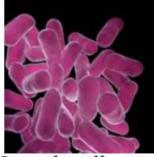
Pseudomonas sp.


Hartmanella sp.

- For example, the cellulose consisting of polymerized glucose is broken down to dimeric, and then to monomeric sugar molecules (glucose) by cellulolytic bacteria.
- For example, polysaccharides are converted into monosaccharides.
- Proteins are split into peptides and amino acids.

Hydrolysis

Accomplished through extracellular enzymes



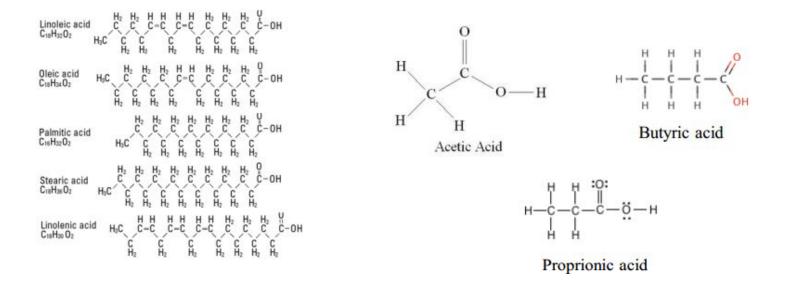
Stage 2: Acidification

- Acid-producing bacteria, involved in the second step, convert the intermediates of fermenting bacteria into acetic acid (CH₃COOH), hydrogen (H₂) and carbon dioxide (CO₂).
- The principal acids produced in this process are acetic acid, propionic acid, butyric acid and ethanol.
- Hereby, the acid-producing bacteria create an anaerobic condition which is essential for the methane producing microorganisms.

Acidogenesis

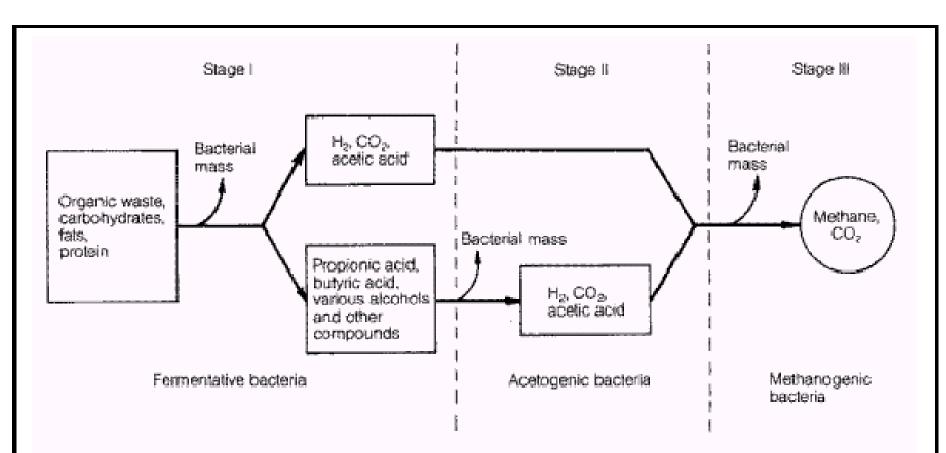
- Monomeric products hydrolysis are fermented into fatty acid intermediaries
- Performed by acidogens
- Generally fastest step in process
- Unbalanced acidogenesis can cause acidification

Lactobacillus sp.



Propionibacterium sp.

Acidogenesis


- Many different fatty acids produced
 - Long-chain fatty acids (LCFAs) (generally produced from lipids)
 - Volatile fatty acids(VFAs) (butyric, proprionic, acetic acid)

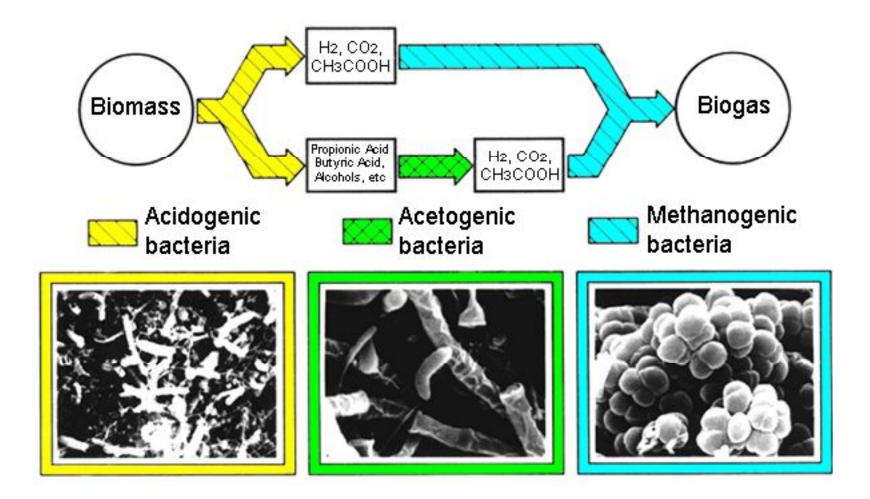
Stage 3: Methanization

- The principle acids produced in Stage 2 are processed by methanogenic bacteria to produce methane.
- The reactions that takes place in the process of methane production is called Methanization and is expressed by the following equations.

CH ₃ COOH Acetic acid	>	CH ₄ Methane	+	CO ₂ Carbon dioxide		
2CH ₃ CH ₂ OH Ethanol	+	CO ₂ Carbon dioxide	>	CH ₄ Methane	+	2CH ₃ COOH Acetic acid
CO ₂ Carbon dioxide	+	4H ₂ Hydrogen	>	CH ₄ Methane	+	2H ₂ O Water

Figure 2: The three-stage anaerobic fermentation of biomass

from: Production and Utilization of Biogas in Rural Areas of Industrialized and Developing Countries, Schriftenreihe der gtz, No. 97, p. 54; after: Märkl, H.: Mikrobielle Methangewinnung; in: Fortschritte der Verfahrenstechnik, Vol. 18, p. 509, Düsseldorf, FRG The process of biogas production involves three stages. The different organisms involved in each stage are listed below in the table: - See more at:


	<u>Name of the stage</u>	Organisms involved
1.	Solubilization	Facultative anaerobic bacteria including Cellulomonas, Eubacteria, Clostridium, Ruminococcus
2.	Acidogenesis	Facultative anaerobic acidogenic bacteria such as Escherichia coli, Clostridium, Actinomyces, Corynebacterium
3.	Methanogenesis	Methanogens i.e. Methane producing anaerobic bacteria like <i>Methanobacterium, Methanococcus,</i> <i>Methanosarcina</i>

Biogas - The Characteristics

The product of digestion is Biogas, a combination of methane and carbon dioxide, typically in the ratio of 6:4 (55-80 % methane). In addition, there are small quantities of hydrogen sulfide and other trace gases.

Typical composition of biogas

Methane	50-80 %
Carbon dioxide	25-50 %
Nitrogen	0-10 %
Hydrogen	0-1 %
Hydrogen sulphide	0-3 %
Oxygen	0-2 %

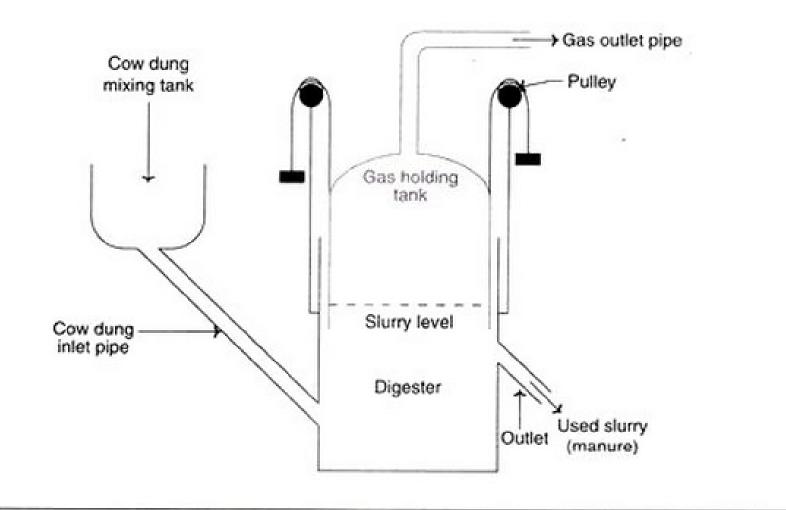


Fig. 31.3 : Diagrammatic representation of a biogas plant (gobar gas plant).

- Cheaper and simpler technology than other biofuels.
- Recovery of the product is spontaneous
- Aseptic conditions are not needed for operation.
- Any biodegradable matter can be used as substrate.
- Anaerobic digestion inactivates pathogens and parasites.

Disadvantages

- The product value is rather low.
- The process is not very attractive economically on large industrial scale.
- The biogas yields are lower due to the dilute nature of substrates used.
- Biogas contains some gases as impurities, which are corrosive to the metal part of internal combustion engine.